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Introduction

A central aim of evolutionary biology is to determine

what limits the ability of natural selection to produce

perfect adaptations (Gould & Lewontin, 1979; Williams,

1992; Barton & Partridge, 2000). Sex allocation, in

particular the ratio of the sexes produced in dioecious

species, has often been used as a focal process for

studying such constraints. Theory predicting optimal

behaviour in sex allocation is well developed, and

empirical data are extensive, making investigation into

general questions about constraints to adaptation possi-

ble (e.g. Herre, 1987; West & Herre, 1998; West &

Sheldon, 2002; Boomsma et al., 2003; Shuker & West,

2004; Burton-Chellew et al., 2008; Pannebakker et al.,

2008). Theory predicts that individuals should adjust the

sex of their offspring in response to changes in environ-

mental conditions such as resource availability (Trivers &

Willard, 1973). There is considerable empirical evidence

for such adjustments in many organisms (reviewed in

West, 2009). Although data often provide qualitative fits

to the predicted behaviour, deviations from optimal sex

allocation strategies are often seen (e.g. Charnov et al.,

1981; Orzack, 1990; Orzack et al., 1991; Herre et al.,

2001; Moore et al., 2005). Suggestions have been made to

explain such deviations, such as the presence of costs

associated with altering the sex ratio (see Pen & Weissing,

2002), adaptive plasticity in highly variable (evolution-

ary) environments (Herre, 1987), differences in selective

pressure (Griffin et al., 2005) and restrictions on knowl-

edge of the environment (Charnov et al., 1981; Flanagan

et al., 1998; Shuker & West, 2004). Identifying the

constraints that lead to these deviations is important if

constraints on other life history traits are to be identified

in the future (West et al., 2002) and if evolutionary

biology is to become even more ‘predictive’. We inves-

tigated whether various aspects of neural processing

restrictions are responsible for deviation from optimal sex

ratios using artificial neural networks (ANNs) as models
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Abstract

Determining processes constraining adaptation is a major challenge facing

evolutionary biology, and sex allocation has proved a useful model system for

exploring different constraints. We investigate the evolution of suboptimal sex

allocation in a solitary parasitoid wasp system by modelling information

acquisition and processing using artificial neural networks (ANNs) evolving

according to a genetic algorithm. Theory predicts an instantaneous switch

from the production of male to female offspring with increasing host size,

whereas data show gradual changes. We found that simple ANNs evolved

towards producing sharp switches in sex ratio, but additional biologically

reasonable assumptions of costs of synapse maintenance, and simplification of

the ANNs, led to more gradual adjustment. Switch sharpness was robust to

uncertainty in fitness consequences of host size, challenging interpretations of

previous empirical findings. Our results also question some intuitive hypoth-

eses concerning the evolution of threshold traits and confirm how neural

processing may constrain adaptive behaviour.
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for neural processing in a simple system based on

parasitoid wasps. Whereas our empirically led focus is

on sex allocation in wasps, understanding how informa-

tion is obtained and used by animals to make important

behavioural and life history decisions remains an impor-

tant challenge uniting cognition, behaviour and ecology

(Dall et al., 2005; Stephens, 2007).

Much of the work on sex allocation has been carried

out using parasitoid wasps (Hymenoptera), where males

develop from unfertilized eggs and females develop from

fertilized eggs (Cook, 1993; Godfray, 1994). This allows

females to control the sex of their offspring (Godfray,

1994). Solitary wasps, which lay a single egg per

arthropod host, are predicted to lay males in small hosts

(low resource availability for the developing offspring)

and females in large hosts (high resource availability for

the developing offspring). This occurs as the fitness of

female wasps is expected to increase more with the size

of the host from which it emerged than does the fitness of

male wasps. This results from the correlation between

adult body size and host size and because large females

have a much larger egg load and host finding capability

than smaller females, but the mating advantage of large

males over smaller males is less pronounced (see

Godfray, 1994). It is predicted that the shift from laying

male to female offspring should be a sharp switch, at a

specific host-size threshold (Charnov et al., 1981), but

the observed data show a gradual transition in many

species (van den Assem, 1971; Charnov et al., 1981;

Simbolotti et al., 1987; Godfray, 1994; West & Sheldon,

2002). Such gradual switches are also encountered

in other organisms which show shifting sex allocation

in response to environmental, social or maternal condi-

tion (e.g. West & Sheldon, 2002; Sheldon & West, 2004).

Recently, ANNs have proved informative tools for

investigating a wide range of evolutionary phenomena

that involve information and neural processing (e.g.

Kamo et al., 1998, 2002; Phelps & Ryan, 2000; Tosh &

Ruxton, 2006; Tosh & Ruxton, 2008; Mannella &

Baldassarre, 2007; Tosh et al., 2009). ANNs are simple

analogues of real neural processing networks which,

although greatly simplified, maintain the fundamental

element of neural processing (Tosh & Ruxton, 2008).

Using ANNs allows us to combine an idealized form of

neural processing with a well-characterized model of sex

ratio, resulting in a more biologically explicit evolution-

ary model than is provided by current models. Combin-

ing ANNs with a genetic algorithm means that their

evolutionary history can be easily manipulated, enabling

investigations into the effects of events in the past on

current responses to stimuli (Phelps & Ryan, 2000).

ANNs can inform on how perceptual systems solve

problems and can provide hypotheses to be tested

empirically. In this study, we investigate not only

whether the ANNs can solve the sex allocation problem,

thus indentifying whether the processes of information

acquisition and neural processing are likely to prevent

evolution to the optimal threshold, but also when and

how they fail and what the characteristics of the errors

are.

We investigated whether gradual rather than sudden

shifts in sex ratios of parasitic wasps in response to host

size could be explained through incorporating ANNs into

sex allocation theory. Populations of ANNs evolved

according to a biologically inspired genetic algorithm

where the fittest individuals go on to reproduce, with

fitness determined from empirically observed relation-

ships (see Methods). We tested four specific hypotheses,

suggested by previous research, about the sharpness and

position of the sex allocation switch. (i) If maintaining

some aspect of a neural network is costly in fitness terms,

the structure and function of the network will be affected

(Laughlin et al., 1998; Phelps, 2007) and its ability to

process information could be damaged resulting in a

more gradual switch being observed. (ii) If the underly-

ing host-size distribution is changing through time, then

the optimal switch point would not be fixed, which

would result in a gradual shift in sex ratio with increasing

host size (Charnov et al., 1981). (iii) Smaller neural

networks (brains, or parts of brains dealing with a focal

behaviour) could constrain performance (Cole, 1985;

Mares et al., 2005; but see Chitka & Niven, 2009)

resulting in suboptimal sex allocation. (iv) The unpre-

dictability of future environmental conditions that will be

experienced by offspring, or the unpredictability of

environment quality from information available to a

mother, constrains the ability to make correct decisions,

resulting in suboptimal sex allocation (Charnov et al.,

1981; King, 1989; West & Sheldon, 2002; Sheldon &

West, 2004).

Methods

We model the behaviour of solitary parasitoid wasps,

basing parameters on the species Lariophagus distinguen-

dus Förster (Hymenoptera, Pteromalidae) as necessary

data for this species are abundant and show sex ratio

shifts in the predicted direction. Data exist on how host

size affects emerging wasp size (Charnov et al., 1981),

and how that in turn relates to fitness through the

number of expected offspring (van den Assem et al.,

1989). Through these known relationships, we were

able to build a genetic algorithm according to which

the ANNs evolved. Additional analysis showed that the

exact form of the relationships is not important, as the

overall shape of the fitness landscape (fitness gains and

losses because of different switch gradients and switch

points) does not change for different parameters of the

system if the marginal fitness gains with increasing host

size are greater for females than for males. Therefore,

our results should extend to any species where female

offspring benefit more from larger hosts than do male

offspring. For simplicity, we assumed in the model that

wasps assess size using physical measurement as has
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been shown in some species of parasitoid (e.g. Schmidt

& Smith, 1987) and that host size represents host

quality.

Fitness functions

To obtain a single relationship linking the fitness of a

wasp to the size of the host it was produced in, we used

previously published empirical studies that linked host

size to adult body size (Charnov et al., 1981) and

subsequently body size to fitness (van den Assem et al.,

1989) for L. distinguendus. The estimate of the relative

fitness of a son was taken from a male’s ability to

inseminate females over its lifetime, and the relative

fitness of a daughter was based on a measure of egg

production (Charnov et al., 1981; van den Assem et al.,

1989). From empirical data, Charnov et al. (1981) found

that male wasps emerging from a host of size x in the

range 0.7–1.3 mm had head width y given by

y = 0.16 + 0.28x. There was no further increase in male

head width for males emerging from hosts larger than

1.3 mm. For females, emerging from hosts of size 0.7–

1.3 mm, y = 0.11 + 0.37x, and for hosts of size 1.3–

2.0 mm, y = 0.54 + 0.044x. For males, van den Assem

et al. (1989) found that the number of full inseminations

likely to be achieved by a male wasp with head width y

(in mm) over its lifetime is given by v = 24y–3.5.

Similarly, they found that the egg production (in

130 h) of a female with head width y is given by

v = 59y–17. Combining the two functions for males

means that male relative fitness v is a function of host

size given by

v ¼ 6:72x þ 0:34 if 0:7 � x � 1:3

¼ 9:076 if x > 1:3
ð1Þ

Similarly for females,

v ¼ 21:83x � 10:51 if 0:7 � x � 1:3

¼ 2:596x þ 14:86 if x > 1:3
ð2Þ

Following Charnov et al. (1981) and using these relative

fitness measures and assuming a uniform host-size

distribution over the range 0.7–2.0 mm, numerical

search shows that the optimal host size at which to

switch from laying male to female offspring is 1.428 mm

(to three decimal places; see Appendix S3 for details). In

some of the later treatments, the fitnesses calculated from

eqns (1) and (2) were adjusted as the wasps were subject

to additional neural costs that affected fitness, or noise in

the relationship between host size and offspring fitness

(details given in the Treatments section).

Artificial neural networks

We used simple feed forward fully connected ANNs to

represent the information processing systems of the

wasps (see Fig. 1). The simple and generalized input

layer could be interpreted as touch sensitive cells on the

tip of an ovipositor sensing the size of the host (see

van den Assem, 1971). The inputted information passes

to a single layer of hidden nodes through weighted

connections, where the weights control how information

is passed through the network. The major results are

presented for ANNs with five hidden nodes; however,

this was varied between 1 and 7 nodes to investigate

the effects of the number of hidden nodes as a proxy for

the complexity of the nervous system or the size of the

module in the brain dealing with this behaviour (referred

to as brain size for simplicity, but see Chitka & Niven

(2009) for a review of the meaning of brain size). Each

hidden node outputted a sigmoidal function of the

weighted sum of its inputs to a single decision node.

The decision node output (decision) was probabilistic. A

number between 0 and 1 was drawn at random from a

uniform distribution, and if this value was less than the

sigmoidal function of the weighted sum of the inputs

(including the bias) to the decision node, then the output

of the ANN was 1 (a male was laid), and if it was greater

the output of the ANN was 0 (a female was laid). The

sigmoidal function scales inputs to outputs between zero

and one and is a simple transfer function frequently used

in ANNs (Enquist & Ghirlanda, 2005). At the hidden

node level, the function used was 1 ⁄ (1 + exp()0.5x)),

and at the decision node the function used was

1 ⁄ (1 + exp()x)). Different functions were used at the

different levels as the number of inputs to the hidden

nodes was much larger, and therefore the input x was

potentially much bigger, than the corresponding inputs

to the output node.

Fig. 1 Illustrative figure of a feed forward artificial neural network

with five input nodes, two hidden nodes (in a single hidden layer)

and one output node. The networks used consisted of an input

layer of 200 sensing nodes arranged in a single row. Hosts were

projected onto the centre of the input layer, stimulating between 70

and 200 of the sensing nodes. Each hidden node and the decision

node also had a bias associated with it, i.e. a nonweighted input not

associated with the sensing area.
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Genetic algorithm

A population of wasps represented by these ANNs was

allowed to evolve according to a genetic algorithm such

that male and female wasps with the fittest ANNs passed

on their weights to the next generation. All weights

within each network were initialized from a standard

normal distribution (mean = 0; standard deviation = 1).

For each replicate, 250 females and 250 males were

simulated initially. The population of wasps represented

by the ANNs then evolved using a genetic algorithm. To

form the next generation of wasps, for each host (fixed

at 500 and representing the available host population), a

female was chosen to reproduce (probabilistically) based

on her fitness (rescaled between 0 and 1 relative to all

females in the adult generation). In each case, a male

was also chosen based on his fitness; however if the

laying female’s decision was to lay a male (unfertilized)

egg, then none of the weights of the male ANN were

used to produce the offspring (to replicate the haplo-

diploid genetic system). Fitness was determined from

the size of the host that an individual emerged from

[using eqns (1) and (2)], except during the first gener-

ation where all fitnesses were assumed to be equal.

When a male offspring was produced, all weights were

inherited from the mother, and when a female offspring

was produced then approximately half of her weights

were inherited from her mother and the remainder

from her father (the set of weights inherited from each

parent being chosen at random at each egg production

step). The fitness of a given ANN can be interpreted as

its ability to allow a female wasp with that ANN to

allocate sons or daughters to hosts of the correct size

range.

Fitness eqns (1) and (2) were derived from the

potential egg production of females and the likely

number of matings achievable for males; however within

any generation of the genetic algorithm the fitness values

were rescaled to obtain a fitness measure relative to other

wasps of the same sex. This prevents population crashes,

for example if only small (and therefore egg limited)

females are produced at early stages of evolution, the

fittest (largest) females will reproduce on all available

hosts rather than being limited by egg load. The

assumption that both a male and a female are chosen

for any reproductive event, rather than a female mating

with only one or two males during her lifetime as is

usually the case (van den Assem, 1970; van den Assem

et al., 1989), speeds up the genetic algorithm and

prevents premature reduction in ‘genetic’ (connection

weight) diversity.

Random mutations in weights occurred at a rate of

0.01 per generation, and mutated weights were ±5% of

their original value (plus or minus chosen at random).

Biases were allowed to mutate in the same way.

For each generation, the 500 hosts were drawn at

random from the set of discrete host sizes (0.7, 0.8, …,

2.0). Increments of 0.1 mm were chosen as this is a small

change, yet large enough to be detectable by real wasps

(see Simbolotti et al., 1987). This represents an unchang-

ing host-size distribution across generations. We assumed

a uniform host-size distribution, with hosts ranging from

0.7 to 2.0 mm, as this is the host-size range for

L. distinguendus over which relationships between host

larval size and emerging wasp size have been studied and

theory developed (Charnov et al., 1981; van den Assem

et al., 1989). A uniform host-size distribution was used as

this is the simplest distribution and avoids problems

associated with spread about the midpoint when mid-

point is allowed to vary temporally.

Treatments

ANNs evolving according to the genetic algorithm

described in the absence of additional costs were classi-

fied as being in treatment group A. We investigated the

effects of including different costs to the network on the

sex allocation switching behaviour in a number of ways

to address hypothesis 1. The first costs were based on the

number of active links within certain parts of the

network. Although the system is greatly simplified from

reality, this could represent costs associated with neurone

maintenance (Phelps, 2007), although as the cost of each

neurone is based on the number of active links with

other neurones or sensing nodes, it could be interpreted

as the cost of maintaining ionic gradients at synapses

within the dendrites of the neurone (Magestratti, 2004).

A link was considered active if the magnitude of its

weight was greater than a threshold, taken to be 0.01.

Fitness was calculated by multiplying the fitness that was

determined from host size [from eqns (1) or (2)] by one

minus the proportion of links in the network active

above a threshold. These costs were implemented as

treatments B and C. Treatment B included such costs

only at the input nodes to hidden layer level (the cost of

maintaining neurones associated with information gath-

ering). Treatment C included the costs at the input nodes

to hidden layer level and the hidden nodes to output

node level (additionally including the cost of maintaining

neurones associated with processing of the information).

The second types of costs were based on the size of the

weights associated with each link within the network.

This could represent costs associated with maintaining

synapses (Phelps, 2007), for example the cost of reab-

sorption and recycling of neurotransmitter after excita-

tion (Magestratti, 2004). Large weights represent

synapses with large excitatory or inhibitory effects and

hence would incur larger costs, and high costs could

therefore limit the amount of information that can be

passed across a synapse. For these costs, fitness was

determined by multiplying the original fitness [calculated

from eqns (1) or (2)] by a function F(s), where s is the

sum of the absolute values of the weights of the links in

the network. For treatment D, this included only links
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ª 2 0 1 0 T H E A U T H O R S . J . E V O L . B I O L . 2 3 ( 2 0 1 0 ) 1 7 0 8 – 1 7 1 9

J O U R N A L C O M P I L A T I O N ª 2 0 1 0 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



connecting the inputs to the hidden nodes, and for

treatment E this included all links in the network. The

function F(s) was taken to be a sigmoid function

F(s) = 1)1 ⁄ (1 + exp()0.01(s-450))). The imposition of

both types of neural costs can affect the structure of the

network to ensure that the required information is

passed through the network at minimal cost (Phelps,

2007).

To address hypothesis 2, temporal variation in the

distribution of host sizes was implemented as treatment

F. Hosts were small (0.7–1.1 mm), medium (1.2–

1.5 mm) or large (1.6–2.0 mm) in a particular generation

(rather than fixed across all sizes for all generations). To

address hypothesis 3, we tested the effect of the number

of hidden nodes within an ANN on the ability to learn by

comparing the outputs of ANNs with 1, 3, 5 and 7 hidden

nodes evolving under treatment A (no costs).

To address hypothesis 4, we simulated the situation

where offspring fitness is not entirely determined by host

size but also by some additional stochastic factors, or by a

degree of unpredictability in host size that results in

unpredictability in offspring fitness. To do this, random

noise was introduced to the fitness of each wasp after the

initial calculation based on host size [from eqns (1) or

(2)]. Three levels of noise were tested separately, drawn

from uniform distributions: 0.85–1.15 (small random

noise), 0.75–1.25 (intermediate random noise) and 0.5–

1.5 (large random noise). Then, in each case the new

fitness was calculated by multiplying the original fitness

by noise. The three levels of random noise were imple-

mented as treatments G (small random noise), H (inter-

mediate random noise) and I (large random noise).

Replicates and sex ratio testing

For each treatment (summarised in Table 1), 12 indepen-

dent replicate populations (cohorts) were simulated. Each

was allowed to evolve under the genetic algorithm for

100 000 generations. After this time 20 ANNs (represent-

ing individual female wasps) were chosen at random from

the population, and each was presented with 10 hosts of

each host size, and the output (the decision to lay a male or

female egg in the host as a 1 or 0) was recorded. The sex

ratio profile (proportion of males laid in hosts with

increasing host size) of each of the 20 ANNs was calculated

and used for analysis. Sampling from the population was

carried out as is likewise often carried out in empirical

studies, because it would have been computationally

expensive to test all female ANNs (around 250 per

replicate) and carry out subsequent regressions.

Statistical analysis

To test for differences between switching behaviours in

the ANNs that evolved under different treatments, we

first fitted nonlinear regressions (using the method of

least squares) of the form

rðxÞ ¼ 1=ð1þ expð�ax � cÞÞ ð3Þ
to the sex ratio profiles of each individual (using

MATLAB’s nlfit function). This was performed to extract

parameters representing the behaviour of the ANNs that

had an exact meaning, and although the method uses

least squares fitting, the results are clearly reasonable

based on raw data (see Fig. 4). The value of a determines

the slope of r(x), and the midpoint (the point at which

r(x) = 0.5 for this value of a) is determined by c and is

given by )c ⁄ a, which we label as parameter b (see Fig. 2).

Parameter searches began at a = )1 (a value giving a

slow sigmoidal decrease in sex ratio with increasing host

size) and c = 1.4 (corresponding to a value of b near the

optimal switch point). We then tested for differences in

the values of the parameters a (steepness of switch) and b

(location of switch) generated by the regressions for the

individuals of the different treatments.

There were strong effects of cohort on the values fitted;

therefore, an average (median) value for each parameter

was taken for each cohort and used as independent data

points. The median data were not normally distributed,

and so nonparametric (Kruskal–Wallis) tests for group

(treatment) differences were used. Post-hoc Mann–

Whitney tests were used to determine pair-wise differ-

ences between treatments (N1 = N2 = 12 throughout).

Interquartile ranges of the values of a and b generated

within each cohort were also measured to indicate

variability. The effects of treatment on this measure of

variability were tested in the same way as differences in

medians. The best-fit values of a and b generated by the

nonlinear regressions were used. The maximum number

of iterations of the fitting algorithm was set to 1000. In

seven of the 2160 regressions, the iteration limit was

reached and the parameter estimates from the final

iteration were used.

Fig. 2 The sex ratio of offspring laid in hosts of increasing size

according to 1 ⁄ (1 + exp()a (x–b)) for several parameter sets.

Parameters are (solid line) a = )50, b = 1.4, (dashed line) a = )5,

b = 1.4, (dot-dash line) a = )1, b = 1.4, (dotted line) a = )5, b = 1.7.
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Results

Fitness without costs

Populations (cohorts) of wasps with evolving ANNs

evolve towards producing sharp switches, approaching

the optimal exact switch (Fig. 3, and see supplementary

Fig. S1.1 in Appendix S1). The overall sex ratio profile for

all 12 cohorts evolving with no fitness costs is less steep

(Fig. 3).

Effects of neural costs

Costs based on synapse maintenance or firing (treat-

ments D and E) led to a significant reduction in the slope

of the switching behaviour in ANNs (A–E group

differences: v2
4 = 28.66, P < 0.001; post-hoc A vs. D:

Z = )2.685, P = 0.007, A vs. E: Z = )3.551, P < 0.001;

Table 2; Fig. 4a). There was no effect on the slope of the

switching behaviour of the alternative type of neural

costs based on maintenance of neurones (treatments B

and C) (A vs. B: Z = 0.722, P = 0.471, A vs. C: Z = 0.549,

P = 0.583). There was no significant effect of any of the

neural costs on the position of the switch point leant

(v2
4 = 3.60, P = 0.462; Table 2), and it is always near 1.4

(but see Table S2.1 for variation within individual

cohorts).

There was an effect of the neural costs on the

variability of the location of the switch point

(v2
4 = 26.55, P < 0.001) with ANNs evolving under costs

based on neuronal firing (treatments D and E) producing

cohorts which were more variable in switch point than

those produced by ANNs evolving without costs (treat-

ment A) (A vs. D, Z = )3.031, P = 0.002; A vs. E, Z =

)3.147, P = 0.002). Similarly, there was an effect of the

costs on the variability of the slope of the switch

(v2
4 = 22.04, P < 0.001), with ANNs evolving under most

extreme costs based on neurone firing being less variable

(A vs. E, Z = 2.916, P = 0.004). These ANNs generated

shallower slopes and rarely exhibited rapid switches.

Temporal changes in host distribution

The evolution of the sex allocation switch point was

influenced by the nature of the host distribution over

time. There was a significant effect of a varying host-size

distribution in shifting the switch point to a larger host

size (Z = )2.223, P = 0.026; Table 2; Fig. 4b). However,

there was no significant effect on the slope of the switch

(Z = 0.779, P = 0.436). There was also no significant

effect of the moving host-size distribution on the

variability of the slope or switch point within each

cohort (for a: Z = )1.241, P = 0.215; for b: Z = 0.722,

P = 0.471; Table S2.2).

Effects of number of hidden nodes on learning

The structure of the neural network influenced the

evolution of the switch point. There was a significant

effect of the number of nodes in the hidden layer on the

slope of the switch from male to female offspring

(v2
3 = 16.79, P = 0.001; Fig. 4c). ANNs with one hidden

node displayed more gradual switches than ANNs with 3,

5 and 7 hidden nodes (1 vs. 3: Z = 3.031, P = 0.002; 1 vs.

5: Z = )3.089, P = 0.002; 1 vs. 7: Z = 3.551, P < 0.001;

Fig. 4c). There were no differences between the slopes of

the switches of ANNs with 3, 5 and 7 hidden nodes

(P > 0.05 in all pair-wise comparisons). There were also

differences in the within cohort variability (interquartile

ranges of the values of a within each cohort) of the slopes

across ANNs (v2
3 = 12.53, P = 0.006), with ANNs with

one hidden node being less variable than ANNs with 3, 5

and 7 hidden nodes (1 vs. 3: Z = )2.165, P = 0.034; 1 vs.

5: Z = )2.685, P = 0.007; 1 vs. 7: Z = )3.147, P = 0.002).

There were no differences in the variability of the slopes

of the switches of ANNs with 3, 5 and 7 hidden nodes

(P > 0.05 in all pair-wise comparisons).

In contrast to the steepness of the switch, there was no

significant effect of the number of hidden nodes on the

location of the switch point (v2
3 = 1.85, P = 0.603).

However, there were differences in the variability of

the locations of the switches within the cohorts across the

treatments (v2
3 = 16.06, P = 0.001), with the ANNs with

one hidden node this time being more variable than

ANNs with 3, 5 and 7 hidden nodes (1 vs. 3: Z = 2.916,

P = 0.004; 1 vs. 5: Z = 2.916, P = 0.004; 1 vs. 7:

Z = 3.551, P < 0.001; P > 0.05 in all other pair-wise

comparisons). So although there was no difference in the

location of the median of the switch point, it was a much

Fig. 3 Artificial neural networks (ANNs) can learn near-optimal sex

ratio behaviour. The optimal sex ratio switching behaviour for the

discrete system is shown (solid line), along with the sex ratio profile

of a single cohort of ANNs (with the sharpest switch) evolving with

no additional neural costs (short dashed line with triangle markers),

and the sex ratio profile averaged over all 12 cohorts of ANNs

evolving with no additional neural costs (long dashed line with

square markers, error bars represent interquartile ranges).
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more variable in ANNs with only one hidden node

(Table S2.3).

Effects of random noise

The addition of random noise to simulate unpredictabil-

ity in offspring fitness did not affect the steepness of the

switch (v2
3 = 1.20, P = 0.753; Table 2; Fig. 4d). However,

there was an effect on the location of the switch, with

ANNs subject to the highest level of random noise

(treatment I) switching sex allocation at a smaller host

size than those evolving with no random noise

(v2
3 = 9.95, P = 0.019; post-hoc Z = 2.454, P = 0.014;

Fig. 4d). There was no effect of the random noise on

the variability of the slope or variability of the location of

the switch within the cohorts across treatments (for a,

v2
3 = 2.12, P = 0.548; for b, v2

3 = 2.79, P = 0.425;

Table S2.4).

Discussion

This is the first model of sex allocation to explicitly

include some form of the information processing system,

which has allowed us to shed new light on a well-studied

problem. We found that wasps modelled by ANNs can

evolve towards producing abrupt switches from laying

male to female offspring with increasing host size. The

model uses fitness equations obtained from published

empirical studies, with no other rewards for making

‘correct’ decisions. However, the switches were in gen-

eral less sudden than the immediate switch (exact

threshold) predicted by optimality theory. Adding costs

based on the neural weights (to simulate costs of synapse

maintenance or firing) caused the switch to become

significantly more gradual, thus moving further away

from optimality, although there was no effect of includ-

ing costs based on the number of active links (to replicate

costs associated with maintaining neurones). Reducing

the size of the ANNs to include only one hidden node

resulted in a far more gradual switch when compared

with those produced by ANNs with more hidden nodes,

indicating that brain size could limit the ability to

produce a threshold switch. We have therefore identified

two constraints that could contribute to the suboptimal

sex allocation behaviour observed in real parasitoid

wasps.

Introducing random noise into offspring fitness, to

simulate factors other than current host size affecting

offspring fitness, affected only the location of the mid-

point of the switch and not the slope as had previously

been suggested (Charnov et al., 1981; King, 1989; West &

Sheldon, 2002; Sheldon & West, 2004). Similarly, a

variable underlying host distribution, which had been

proposed as a reason for gradual switching behaviour

(Charnov et al., 1981), also affected only the position of

the switch and not its steepness. These differences in

(a) (b)

(c) (d)

Fig. 4 The effects of treatments on the slopes

and location of the sex ratio switch point.

Solid line represents baseline data in all cases

with no costs, no random noise, five hidden

nodes and no temporal variation in the host-

size distribution (given with interquartile

ranges in Fig. 3). (a) Costs of synapse main-

tenance, at the input to hidden node level

(solid squares and short dashed line) and

both levels (open squares and dashed line).

(b) Temporal variation in the host-size dis-

tribution (open hexagons and dashed line)

affects location but not the steepness of the

switch. (c) Artificial neural network struc-

ture influences the steepness but not the

location of the switch (artificial neural net-

works with one hidden node shown by open

face triangles and dashed line). (d) The

largest level of random noise (open dia-

monds and dashed line) affects the switch

point but not the slope. Symbols represent

median values across all individuals in all

cohorts, error bars represent interquartile

ranges. Symbols and error bars are slightly

offset for clarity. Not all treatments are

shown.
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switch point are of a very small size (approximately

0.05 mm), which are smaller than is likely to be

measureable by real wasps (see Simbolotti et al., 1987).

Why was an immediate switch not always observed?

Some individuals and some entire cohorts, evolving

under the genetic algorithm with no costs and no

random noise, generated very steep, almost instanta-

neous switches as predicted by theory (see Fig. 3 and

supplementary Fig. S1.1 in Appendix S1). The overall sex

ratio profile obtained from combining all of the replicates

within this treatment is less steep, because of the

variability between cohorts (Fig. 3). It has been suggested

that thresholds are not observed at population levels

because although individuals display threshold behav-

iours, there is a continuous distribution of threshold

value within the population (Hazel et al., 1990). Our

results show that the differences in switch point between

the cohorts are small in comparison with the differences

in slope (Table S2.1), indicating that the suggestion of

Hazel et al. (1990) does not apply in this situation.

We suggest that not all of the ANNs (evolving with no

additional costs) produced offspring sex ratio profiles

with a sharp switch from male to female offspring

because there is greater selection to evolve the optimal

switch-point location than there is for the switch to have

a steep slope. This can be seen in Fig. S3.1 in Appendix

S3 of the online appendices which shows the relative

fitnesses resulting from steep and gradual switches over

the range of switch points. Although the threshold switch

is optimal, there are not large fitness gains from a small

increase in how quickly the switch occurs when the

Table 1 Summary of treatments and hypotheses they address.

Treatment Summary Hypothesis

A No neural costs Control treatment in

all hypothesesConstant host-size distribution

5 hidden nodes

No random noise in fitness

B Neural costs based on: 1

Number of active links

In input nodes to hidden layer level

Constant host-size distribution

5 hidden nodes

No random noise in fitness

C Neural costs based on: 1

Number of active links

In both levels

Constant host-size distribution

5 hidden nodes

No random noise in fitness

D Neural costs based on: 1

Size of weights

In input nodes to hidden layer level

Constant host-size distribution

5 hidden nodes

No random noise in fitness

E Neural costs based on: 1

Size of weights

In both levels

Constant host-size distribution

5 hidden nodes

No random noise in fitness

F No neural costs 2

Host-size distribution changing in time

5 hidden nodes

No random noise in fitness

G No neural costs 4

Constant host-size distribution

5 hidden nodes

Small random noise in fitness

H No neural costs 4

Constant host-size distribution

5 hidden nodes

Intermediate random noise in fitness

I No neural costs 4

Constant host-size distribution

5 hidden nodes

High random noise in fitness

Table 2 Summary data for the two parameters fit by nonlinear

regressions, and measures of variability within cohorts.

Treatment

Median values

a (IQR) a IQR (IQR) b (IQR) b IQR (IQR)

A )4.55 (4.40) 1.36 (0.10) 1.43 (0.04) 0.10 (0.05)

B )6.76 (3.70) 1.47 (2.77) 1.41 (0.07) 0.08 (0.05)

C )7.21 (4.22) 3.06 (4.05) 1.40 (0.05) 0.07 (0.04)

D )1.93 (2.52)** 0.75 (0.50) 1.38 (0.11) 0.18 (0.27)**

E )0.20 (0.83)*** 0.48 (0.22)** 1.38 (1.26) 1.24 (1.59)**

A )4.55 (4.40) 1.36 (0.10) 1.43 (0.04) 0.10 (0.05)

F )8.44 (16.72) 4.42 (23.19) 1.47 (0.05)* 0.08 (0.07)

1 hn )0.46 (1.36)abc 0.56 (0.24)abc 1.38 (0.20) 0.43 (1.00)abc

3 hn )4.06 (9.48)a 1.32 (27.70)a 1.40 (0.12) 0.11 (0.09)a

5 hn (A) )4.55 (4.40)b 1.36 (0.10)b 1.43 (0.04) 0.10 (0.05)b

7 hn )5.11 (12.93)c 2.22 (11.01)c 1.41 (0.08) 0.09 (0.06)c

A )4.55 (4.40) 1.36 (0.10) 1.43 (0.04) 0.10 (0.05)

G )5.38 (13.83) 4.58 (15.31) 1.42 (0.06) 0.12 (0.12)

H )3.85 (9.52) 1.73 (6.90) 1.44 (0.05) 0.12 (0.15)

I )6.82 (8.60) 7.11 (16.11) 1.38 (0.09)* 0.07 (0.04)

Given are median values of parameter a (slope) and b (switch point)

over 12 replicate cohorts, and the interquartile range of the median

over the 12 replicate cohorts (in brackets). Parameter IQR refers to

the median value of the within cohort interquartile range for each

parameter across the 12 cohorts, the interquartile range of this

measure is also given across the 12 cohorts (in brackets). Significant

differences are indicated in each block of the table. Asterisks denote

significant differences from the control treatment (A, given in bold)

with no costs ⁄ random noise ⁄ moving host distribution; * denotes

P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001. When com-

paring between artificial neural networks with variable numbers of

hidden nodes, all pairwise comparisons were made; median values

with the same superscript (within the column) are significantly

different.
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switch point has evolved to be located in the optimal

place. Therefore, evolution to a threshold switch could be

very slow. A similar result was found by Bach et al.

(2007) in the context of the evolution of dispersal

behaviour. It was shown that threshold dispersal (dis-

persal of an individual from a patch only after a threshold

value of population density) is optimal (and evolution-

arily stable) but did not evolve within the simulated

populations. Bach et al. (2007) concluded that the

threshold behaviour is unlikely to be achievable as

selection near this point is weak and drift takes over.

Similarly, we found that selection was weak as behaviour

approached an exact switch (see Appendix S3). With

such weak selection around the threshold, we would

expect a reasonable degree of variation in switch-point

slope at mutation-selection balance (see Pannebakker

et al., 2008 for such a study of sex ratio variation). Weak

selection around the optimum is a classic feature of sex

ratio as a trait, because of its frequency-dependent nature

and the weakly stable equilibrium generated (Charnov,

1982). Our results have implications to the evolution of

other threshold traits, especially in terms of constraints

that may underlie the accuracy of the threshold itself. We

have identified two mechanisms which will promote

variation about a threshold: weak selection around the

threshold and likely constraints on information process-

ing that limit ability to produce a perfect threshold.

Neural costs and brain size effects

Brain size (as correlated with body size) has previously

been shown to limit the behaviour of other Hymenop-

teran species including the workers of some ant and bee

species (Cole, 1985; Mares et al., 2005), but whether

neural network size is predictive of cognitive ability

remains controversial (Chitka & Niven, 2009). We found

that our proxy for brain size (or at least processing

power) in this system (the number of hidden nodes and

therefore also the number of potential links within the

network) was associated with the accuracy of decision-

making (see Fig. 4c). This is apparent as ANNs with one

hidden node produced offspring sex ratio profiles with

significantly shallower slopes than those produced by

ANNs with 3, 5 or 7 hidden nodes and were therefore

further away from their optimal behaviour. Furthermore,

two of the 12 cohorts of the ANNs with only one hidden

node did not produce a sex ratio that declined with host

size, thus failing to learn the correct behavioural response

to host size. There was no overall effect on the midpoint

position of the switch, although it was more variable in

ANNs with only one hidden node. This variability is

associated with the shallower slope and reflects only that

the sex ratios produced by the smaller ANNs were either

male biased or female biased over the host range, but this

is a further indicator of the poor behaviour of the

smallest ANNs. An ANN with one hidden node is

effectively a single layer network, which is inherently

less powerful than a two layer network, and so the

inability of an ANN with 1 hidden node to learn the

optimal behaviour is not unexpected.

It is initially surprising that the costs associated with

neurone maintenance (treatments B and C; Table 2) did

not affect the speed of the switching behaviour, as such

costs can limit the number of active links within a

network and therefore limit the effective size of the

network. However, there appears to be redundancy

within the ANNs with five hidden nodes. This is clear

from Table 2 (and Table S2.3) as ANNs with only three

hidden nodes can evolve a switch as steep as those with

five hidden nodes but have fewer potential links. Costs

that reduced the number of active links (those with

weights above a small threshold) did not damage the

ability of the ANNs to evolve the correct behaviour, as

presumably redundant links were lost. There was a clear

effect of costs associated with synapse maintenance or

firing (treatments D and E). The sigmoidal costs that were

included were strong, to reflect that the cost of passing

information at a high capacity chemical synapse (large

weight) is more than proportionally greater than the cost

of passing information at a low capacity synapse (small

weight) (Laughlin et al., 1998). The costs resulted in many

active synapses within the networks, but with smaller

weights. Even with the redundancy of links in ANNs with

five hidden nodes, the ANNs were unable to overcome

these information processing constraints. We investigated

the effects of only two types of potential costs that could

occur in neural networks but found that they had

different impacts on the deviation from optimal behav-

iour, highlighting that the nature of the costs incurred in

maintaining neural networks might be very important.

Synapse maintenance costs also affected the variability of

the switching behaviour of the ANNs. The slopes became

less variable when the most extreme costs were included,

as the slope of the switch was usually very shallow. As

with the smallest ANNs, this resulted in more variability

in the midpoint but did not affect the overall position.

Effects of randomness in fitness

Gradual transitions in sex ratio with some environmental

variable have been attributed to unpredictability in

environment quality. For example, idiobiont wasps,

which paralyse the host at parasitism, display more

precise sex allocation shifts with host quality than

koinobiont wasps, which allow the host to continue to

grow after parasitism (King, 1989; West & Sheldon,

2002). A similar phenomenon is found in mammals,

where variation in sex ratio is less closely correlated with

maternal condition in species with long gestation periods

(Sheldon & West, 2004). This study found that the

incorporation of random noise into offspring fitness,

reflecting unpredictability in environmental (host) qual-

ity, did not affect the decision accuracy of the ANNs, with

the exception of the highest level of random noise, which
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did then affect the midpoint of the switch, but the slope

of the switch was not affected.

This result challenges the idea that it is unpredictability

itself that causes gradual changes in sex allocation

behaviour. Instead, it could be the nature of the unpre-

dictability that is important; King (1989) argued that it is

not the ability of an ovipositing female to predict future

resource availability that is important to maintain the

relationship between host size and offspring sex, but it is

rather the existence of a consistent relationship between

host size and resource availability in the first place. The

random noise in fitness introduced in the simulations of

treatments G, H and I does not change the underlying

pattern of fitness with host size, instead it increases the

variance around it, more so for larger hosts (which

produce fitter individuals and fitness is perturbed by a

proportion of its original value). Therefore, in the ANN

system simulated, host size remains the best predictor of

offspring fitness. This result also questions the more

general suggestion of Charnov et al. (1981) that the

presence of factors unknown to an ovipositing female

that affect offspring fitness would result in a more

gradual shift in sex ratio. Unsurprisingly, the relationship

between host size and offspring sex is lost when fitness

becomes completely random (results not shown). Similar

results have been found for models of information

sampling where an environmental variable changed

through time, making the environment more or less

predictable; too much variability means the information

is of little value making a fixed strategy best, regardless of

the state of the variable sampled (reviewed by Stephens,

2007). We have shown there is no a priori reason for

unknown factors to influence to slope of the switch and

suggest that this may prove to be a facet of environment-

dependent thresholds more generally, despite the intu-

itive appeal of the ‘confusing’ effect of noise on threshold

accuracy and precision.

The effects of a temporally changing host-size
distribution

Charnov et al. (1981) predicted that a nonstationary

distribution of host sizes would cause a more gradual

switch in sex ratio with increasing host size. In particular,

it was suggested that in such a situation, wasps would

produce switches with different midpoints, resulting

overall in a gradual switch. A similar point has been

made regarding general threshold traits at the population

level (Hazel et al., 1990). The results of this study do not

entirely support this prediction, as all ANNs within a

cohort adjusted their switches in the same direction,

resulting in a change in the switch point but not the slope

of the switch. Also, the switch points produced by the

ANNs evolving with varying host-size distributions were

no more variable than those produced when the host-

size distribution was constant, either within cohorts or

across cohorts within the treatments (Tables 2 and S2).

The movement in switch point is likely to be due to the

fact that the optimal threshold was actually shifted by the

treatment itself. The optimal switch is calculated based on

the distribution of the host sizes and hence if this changes

the switch point can change (see Appendix S3 and

Charnov et al., 1981). The only other treatment to affect

switch point was the highest level of random noise.

Random noise in fitness affects the relative fitness of

male and female offspring, which also affects the optimal

switch point (see Appendix S3 for details). The lack of an

effect of any of the other treatments on the midpoint of

the switch is attributed to the stronger selection on the

ANNs to evolve to produce a switch at the optimal point

(Fig. S3.1 in Appendix S3).

Conclusions

Our study has more general implications for the evolu-

tion of threshold traits which depend on assessing one or

more aspects of environmental quality (Roff, 1996). We

have shown that threshold switches from one type of

behaviour to another can evolve under reasonable

assumptions; however a sharp threshold itself is rarely

seen, and some aspects of neural processing and structure

can limit threshold behaviour. Threshold traits are

common and include other aspects of sex allocation

(see Charnov, 1982; Hardy, 2002 and West, 2009), host

choice (Plantegenest et al., 2004), foraging (Stephens &

Krebs, 1986) and oviposition decisions (e.g. Santiago

Lastra et al., 2006), as well as a range of phenotypic and

behavioural plasticities (Stearns, 1992). Extending a

similar modelling framework to these areas could there-

fore be potentially very informative.

This study is a first step towards incorporating details of

neural structure (and associated costs) and evolutionary

history into evolutionary models to predict optimal sex

allocation behaviour. Similar approaches have been

taken elsewhere (e.g. Phelps & Ryan, 2000; Tosh et al.,

2009), highlighting the benefits of modelling behaviour

using ANNs and addressing the structure of information

processing systems. We used a biologically plausible

genetic algorithm to evolve ANNs capable of sex ratio

adjustments in response to environmental conditions.

We showed that including some types of potential neural

costs or limiting the size of the ANNs increases deviations

from optimal behaviour, but that the presence of random

noise is not sufficient to cause such a shift. Generally, our

results show how limitations of neural network size and

costs of neural processing can constrain adaptation,

leading to behaviours that are not adjusted perfectly in

response to environmental variation.
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