but enhanced by GTP-γS and AlF₄⁻ (Fig. 2, C and D), indicating that the cytoplasmic domains of β₁ and β₂ can directly interact with Gα₁₃ and that GTP enhances the interaction. The Gα₁₃-β₃ interaction was enhanced in platelets adherent to fibrinogen, and by thrombin, which stimulates GTP binding to Gα₁₃ via GPCR (Fig. 2E). Hence, the interaction is regulated by both integrin occupancy and GPCR signaling.

To map the β₃ binding site in Gα₁₃, we incubated cell lysates containing Flag-tagged wild type or truncation mutants of Gα₁₃ (Fig. S5) with GST-β₂,β₃CD beads. GST-β₂,β₃CD associated with wild-type Gα₁₃ and the Gα₁₃ 1 to 212 fragment containing α-helical region and switch region I (SRI), but not with the Gα₁₃ fragment containing residues 1 to 196 lacking SRI (Fig. 2F). Thus, SRI appears to be critical for β₃ binding. To further determine the importance of SRI, Gα₁₃-β₃ binding was assessed in the presence of a myristoylated synthetic peptide, Myr-LLAERPRTGKHQ (mSRI), corresponding to the SRI sequence of Gα₁₃ (197 to 209) (21, 22). The mSRI peptide, but not a myristoylated scrambled peptide, inhibited Gα₁₃ binding to β₃ (Fig. 2G), indicating that mSRI is an effective inhibitor of β₃-Gα₁₃ interaction. Therefore, we further examined whether mSRI might inhibit integrin signaling. Treatment of platelets with mSRI inhibited integrin-dependent phosphorylation of c-Src Tyr⁴¹⁶ and accelerated RhoA activation (Fig. 3A). The effect of mSRI is unlikely to result from its inhibitory effect on the binding of RhoGEFs to Gα₁₃ SRI because Gα₁₃ binding to RhoGEFs stimulates RhoA activation, which should be inhibited rather than promoted by mSRI (22). Thus, these data suggest that β₃-Gα₁₃ interaction mediates activation of c-Src and inhibition of RhoA. Furthermore, mSRI inhibited integrin-mediated platelet spreading (Fig. 3B), and this inhibitory effect was reversed by C3 toxin (which catalyzes the ADP ribosylation of RhoA) or Y27632, confirming the importance of Gα₁₃-dependent inhibition of RhoA in platelet spreading. Thrombin promotes platelet spreading, which requires cdc42/Rac pathways (23). However, thrombin-promoted platelet spreading was also abolished by mSRI (Fig. 3B), indicating the importance of Gα₁₃-β₃ interaction. Thus, Gα₁₃ integrin interaction appears to be a mechanism that mediates integrin signaling to c-Src and RhoA, thus regulating cell spreading.

To further determine whether Gα₁₃ mediates inhibition of integrin-induced RhoA-dependent contractile signaling, we investigated the effects of mSRI and depletion of Gα₁₃ on platelet-dependent clot retraction (shrinkling and consolidation) of blood clot requires integrin-dependent retraction of platelets from within) (7, 8). Clot retraction was accelerated by mSRI and depletion of Gα₁₃ (Fig. 4, A and B, and fig. S6), indicating that Gα₁₃ negatively regulates RhoA-dependent platelet retraction and coordinates cell spreading and retraction. The coordinated cell spreading-retraction process is also important in wound healing, cell migration, and proliferation (24).

The function of Gα₁₃ in mediating the integrin-dependent inhibition of RhoA contrasts with the traditional role of Gα₁₃, which is to mediate GPCR-induced activation of RhoA. However, GPCR-mediated activation of RhoA is transient, peaking at 1 min after exposure of platelets to thrombin, indicating the presence of a negative regulatory signal (Fig. 4, D and F). Furthermore, thrombin-stimulated activation of RhoA occurs during platelet shape change before substantial ligand binding to integrins (Fig. 4, C, D, and F). In contrast, after thrombin stimulation, β₃ binding to Gα₁₃ was diminished at 1 min when Gα₁₃-dependent activation of RhoA occurs, but increased after the occurrence of integrin-dependent platelet aggregation (Fig. 4, E and F). Thrombin-stimulated binding of Gα₁₃ to α₅β₃ and simultaneous RhoA inhibition both require ligand occupancy of α₅β₃ and are inhibited by the integrin inhibitor Arg-Gly-Asp-Ser (RGDS) (Fig. 4, D to F). Thus, our study demonstrates not only a function of integrin α₅β₃ as a noncanonical Gα₁₃-coupled receptor but also a new concept of Gα₁₃-dependent dynamic regulation of RhoA, in which Gα₁₃ mediates initial GPCR-induced RhoA activation and subsequent integrin-dependent RhoA inhibition (Fig. 4G). These findings are important for our understanding of how cells spread, retract, migrate, and proliferate, which is fundamental to development, cancer, immunity, wound healing, hemostasis, and thrombosis.

Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species

The Nasonia Genome Working Group*T†

We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venom; lateral gene transfers among Vox viruses, Wollbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.

Parasitoid wasps are insects whose larvae parasitize various life stages of other arthropods (for example, insects, ticks, and mites). Female wasps sting, inject venom, and lay eggs on or in the host, where the developing offspring consume and eventually kill it. Parasitoids

References and Notes
15. V. Senyk et al., Cancer Res. 69, 262 (2009).
21. Single-letter abbreviations for amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
27. This work was supported by grants HL080264, HL062350, and HL068819 from the National Heart, Lung, and Blood Institute (X.D.) and GM061454 and GM074001 from the National Institute of General Medical Sciences (T.K.). We thank G. Nuclora for help with bone marrow transplantation and K. O’Brien and M. K. Delaney for proofreading.

Supporting Online Material
www.sciencemag.org/cgi/content/full/327/5963/340/DC1
Materials and Methods
Figs. S1 to S6
References
9 April 2009; accepted 4 December 2009
10.1126/science.1174779

www.sciencemag.org
are widely used in the biological control of insect pests, and they are very diverse, with estimates of over 600,000 species (1, 2). Nasonia is the second genus of Hymenoptera to have whole-genome sequencing, after Apis mellifera (Fig. 1), and Nasonia comprises four closely related parasitoid species: N. vitripennis, N. giraulti, N. longicornis, and N. oneida (3, 4). Nasonia are genetically tractable organisms with short generation time (~2 weeks), large family size, ease of laboratory rearing, and cross-fertile species. Like other hymenopterans, haploid males develop from unfertilized eggs, and diploid females develop from fertilized eggs. Cross-fertile species facilitate the mapping and cloning of genes that are involved in species differences. Haploid genetics assist efficient genotyping, mutational screening (5), and evaluation of gene interactions (epistasis) without the added complexity of genetic dominance. As a result, Nasonia are now emerging as genetic model organisms, particularly for complex trait analysis, developmental genetics, and evolutionary genetics (4).

We sequenced, assembled, annotated, and analyzed the genome of N. vitripennis from sixfold Sanger sequence genome coverage by using a highly inbred line of N. vitripennis (6). The draft genome assembly comprises 26,605 contigs (total length of 239.8 Mb, with half of the bases residing in contigs larger than 18.5 kb (N50), 40.6% guanine plus cytosine content (GC)). Contigs were placed with mate-pair information into 40.6% guanine plus cytosine content (GC). We assessed the error rate of 5.9 sequences and 18,000 expressed sequence tags on the basis of comparison to three finished genomes. Highly inbred lines of the two sibling species N. giraulti and N. longicornis (Fig. 1B) were sequenced with onefold Sanger and 12-fold, 45-base pair (bp) Illumina genome coverage. Assembled by alignment to the N. vitripennis reference using stringent criteria (6), these reads cover 62% and 62.6% of the N. vitripennis assembly, and 86.3% and 86.3% of protein coding regions, respectively. These were used for genome comparisons and provided resources [for example, single nucleotide polymorphisms (SNPs) and microsatellites] for scaffold, gene, and quantitative trait loci (QTL) mapping. Sequence error rates for the N. giraulti alignment are estimated to be 3.8 × 10−4 for the entire alignment and 1.47 × 10−4 for coding sequences on the basis of comparison to three finished N. giraulti BACs (6). Sequences of 25 coding genes in both species perfectly matched their respective aligned sequences.

Normally, the intracellular bacteria Wolbachia prevent the formation of interspecies hybrids; however, antibiotically cured strains are cross-fertile (7). Hybrid crosses (Fig. 1C) (6) were used to map scaffolds and visible mutations onto the five chromosomes of Nasonia (Fig. 2). Several interspecies QTL have already been mapped using genetic/genomic resources, including wing size (8, 9), host preference (10), female mate preference (11), and, in this study, sex-ratio control and male courtship (6). Linkage analysis has revealed that the genome-wide recombination rate in Nasonia is 1.4 to 1.5 centimorgans (cM)/Mb, which is lower than that of honeybees (12, 13), and shows a 100-fold difference in rate between high- and low-recombination regions of the genome (Fig. 2) (6).

An official gene set (OGS v1.1) was generated from comparisons to A. mellifera, Tribolium castaneum, Drosophila melanogaster, Pediculus humanus, Daphnia pulex, and Homo sapiens [details are given in (6)]. Overall, Nasonia encodes a typical insect gene repertoire (Fig. 3) (6), of which 60% of genes have a human ortholog, 18% are arthropod-specific, and 2.4% appear to be hymenoptera-specific, showing high conservation between Nasonia and Apis and low conservation or absence in other taxa. An additional 12% are either Nasonia-specific or without clear orthology. Many (63%) single-copy orthologs shared between Nasonia and Apis occur in microsynteny blocks, which is similar to the amount of microsynteny blocks in Aedes aegypti/Anopheles gambiae and H. sapiens/Gallus gallus (14). Four hundred and forty-five orthologs between Nasonia and humans lack a candidate homolog in D. melanogaster (table S1), including the human transcription factors E2F7 and E2F8, which are involved in cell-cycle regulation. Further refinement of the gene set resulted in OGS v1.2 (15), which totals 17,279 genes, of which 74% have tiling microarray or EST support (6).

Nasonia is abundant in transposable elements (TEs) and other repetitive DNA (table S2 and fig. S1). This contrasts with a paucity of TEs in A. mellifera (16). TE diversity in Nasonia is 30% higher (2.9 TE types/Mb) than the next most diverse insect (Bombyx mori, 2.1 TE types/Mb), and is 10-fold higher than the average dipteran (6, 17). Nasonia also contains an unusual abundance of nuclear-mitochondrial insertions and a higher density of microsatellites (10.9 kb/Mb) than most other arthropod species (18, 19), suggesting that the accumulation of repetitive DNA is a feature of these insects.

The Nasonia genome encodes a full DNA methylation tool kit, including all three DNA cytosine-5-methyltransferase (Dnmt) types (Fig. 1A).

![Fig. 1. Phylogenetic relationships of Nasonia and the DNA methylation tool kit.](image-url)

*All authors with their affiliations appear at the end of this paper.
†To whom correspondence should be addressed. E-mail: werr@mail.rochester.edu (J.H.W.); stephenr@bcm.tmc.edu (S.R.)
In vertebrates, Dnmt3 establishes DNA methylation patterns, Dnmt1 maintains these patterns, and Dnmt2 is involved in rRNA methylation (20). The Nasonia genome encodes three Dnmt1 genes, one Dnmt2, and one Dnmt3, in contrast with D. melanogaster, which has only Dnmt2. The presence of all three subfamilies in both Nasonia and Apis (Fig. 1) raises the question of whether methylation has similar regulatory functions in Hymenoptera as it does in vertebrates. DNA methylation is important in Apis caste development (21) and is suggested for Nasonia sex determination (22). Coding exons of both Nasonia and Apis show bimodal distributions in observed/expected CpG (Fig. S2) (6, 23), which is consistent with mutational biases due to DNA methylation of hyper- and hypomethylated genes. We confirmed methylated CpG dinucleotides in five examined N. vitripennis genes by bisulfite sequencing (fig. S3). These results suggest that epigenetic modifications by DNA methylation may be important in Hymenoptera. Nasonia also has the largest number of ankyrin (ANK) repeat-containing proteins (over 200) so far found in any insect (table S3) (6), suggesting a regulatory importance through protein-protein interactions (24).

Systemic RNA interference (RNAi) in Nasonia allows for gene expression knockdowns (4, 25). The Nasonia genome encodes homologs for the majority of genes implicated in small RNA processes (table S4). However, as in Tribolium and Apis, Nasonia lacks an RNA-dependent RNA polymerase (RdRp) ortholog, indicating a different systemic RNAi mechanism than in Caenorhabditis. Using various computational approaches (6), we identified 52 putative micro RNAs (miRNAs) with homologies to known miRNAs (26), nine that were previously unknown, and 11 additional Hymenoptera-specific miRNAs (table S5). Small-RNA library sequencing confirmed 39 predicted and identified 59 additional miRNAs (table S6).

Nasonia shares a long germ-band mode of embryonic development with Drosophila, but exhibits significant differences in the genetic mechanisms involved (5, 27, 28) (see fig. S4). All major components of the dorso-ventral patterning system are present, with many Nasonia-specific gene duplications in the Toll pathway. Orthologs of vertebrate genes absent from Drosophila include the transforming growth factor-β (TGFβ) ligands ADMP and myostatin, and the bone morphogenesis protein (BMP) inhibitors BAMB1 and DAN, but their functions in Nasonia are not yet known. A. mellifera shows an expansion of the yellow/major royal jelly (yellow/MRJP) genes that are linked to caste formation and sociality (29). Nasonia has the largest number of yellow/MRJP genes so far found in any insect, including an independent amplification of MRJP-like proteins (fig. S5) (6, 29). Although their function in Nasonia is unknown, these genes are expressed broadly in different tissues and life stages (table S7). The insect sex peptide/receptor system, which causes female re-mating refractoriness (30), is highly conserved in insects but is absent in Nasonia and Apis (table S8) (6). Instead, Nasonia males inhibit female re-mating behaviorally with a special “post-copulatory display” (31). Additional features analyzed (6) include those related to sex determination (fig. S6), pathogens and immunity (fig. S7), neuropeptides (tables S9 and S10), cuticular proteins (table S11), xenobiotics (fig. S8), and diapause (table S12).

We investigated genome microevolution, including rapidly evolving genes that are potentially involved in species differences and speciation, by using the genomes of the three closely related Nasonia species. Syonymous divergence between N. vitripennis and its sibling species N. giraulti and N. longicornis is 0.031 ± 0.0002 SE and 0.030 ± 0.0002 SE, respectively, and between N. giraulti and N. longicornis is 0.014 ± 0.0001 SE (6), which is comparable to those among Drosophila sibling species (32). We compared the ratio of synonymous-to-nonsynonymous substitutions (dN/dS) between Nasonia species pairs with respect to gene ontology (GO) term categories, using genes with high-quality alignments and 1:1 orthologs between Nasonia and Drosophila. Nuclear genes that interact with mitochondria revealed significantly elevated dN/dS [by comparison of dN/dS distributions for each GO term to resampled distributions, see (6) and table S13], specifically those encoding mitochondrial ribosomes (P < 0.003 for all species pairs) and oxidative phosphorylation complex I (P < 0.03 for N. vitripennis/N. giraulti and N. vitripennis/N. longicornis) and complex V (P < 0.04 for all species pairs). This finding is consistent with the rapid evolutionary rate of Nasonia mitochondria (33) and studies implicating nuclear-mitochondrial incompatibilities in F2 hybrid breakdown (7, 31). For example, reciprocal crosses between N. giraulti × N. vitripennis have identical F1 nuclear genotypes, but their mitochondrial haplotypes differ. Yet, microarray hybridization (Fig. 2) (6) of DNA from pooled surviving adult F2 haploid males shows distortion in the recovery of particular regions of the genome, which is dependent upon their mitochondrial haplotype (giraulti versus vitripennis). Because hybrid mortality is post-embryonic (7) and embryo ratios are Mendelian (33), these distortions reflect larval to adult mortality. In particular, F2 males with N. vitripennis alleles on the left arm of chro-
mosome 5 and N. giraulti mitochondria suffer nearly 100% mortality (Fig. 2). This region contains three genes encoding mitochondrial interacting proteins, atpD, ampK, and nadh-ubiquinone oxireductase (Fig. 2). Coevolution of nuclear and mitochondrial genomes can accelerate evolution (34), (35), and these findings indicate that such interactions contribute to reproductive incompatibility and speciation in Nasonia.

Sequences of 25 gene regions from multiple strains for the three Nasonia species (6) show low levels of intraspecific variation (table S14) with 0.0005 in N. giraulti to 0.0026 in N. vitripennis, which are much lower than in Drosophila species and more akin to levels observed in humans (36). This low nuclear variation could be explained by founder events, purging of deleterious mutations in haploid males, or inbreeding.

Recent lateral gene transfers from the bacterial endosymbiont Wolbachia into the genomes of Nasonia and other arthropods have been identified (37). Detecting ancient lateral transfers is more problematic. By examining protein domain arrangements in Nasonia relative to other organisms, we uncovered an ancient lateral gene transfer involving Pox viruses, Wolbachia, and Nasonia. Thirteen ANK repeat–bearing proteins encoded in the N. vitripennis genome also contain C-terminal PRANC (Pox proteins repeats of ankyrin-C terminal) domains. This domain was previously only described in Pox viruses, where it is associated with ANK repeats and inhibits the nuclear factor κB (NF-κB) pathway in mammalian hosts (38). A computational screen revealed ANK-PRANC–bearing genes in some Wolbachia and a related Rickettsiales (Fig. 4). Screening additional Wolbachia confirmed the presence of ANK-PRANC genes in diverse Wolbachia. The Nasonia PRANC genes are clearly integrated in the genome (6) and are expressed in different life stages (table S15). Phylogenetic analysis of the PRANC-domain sequences suggests that the Nasonia lineage acquired one or more of these proteins from Wolbachia, with subsequent amplification and divergence (Fig. 4). Such lateral gene transfers between bacteria and animals could be an important source of evolutionary innovation (37).

Nasonia is a carnivore, feeding on an amino acid–rich diet both as larva and adult (4). Mapping of Nasonia genes onto metabolic pathways (39) revealed loss or rearrangement in some amino acid metabolic pathways, including tryptophan and aminosugar metabolism (fig. S9) (6). The changes may reflect its specialized carnivorous diet and can inform efforts to produce artificial diets for more economical parasitoid rearing.

The venom of parasitoids, injected into a host before oviposition, serves to condition the host for successful development of wasp progeny (1, 2). Unlike the defensive Apis venom that inflicts pain and damage, parasitoid venoms have diverse physiological effects on hosts, including developmental arrest; alteration in growth and physiology; suppression of immune responses; induction of paralysis, oncosis, or apoptosis; and alteration of host behavior (40). The identification of Nasonia

**Fig. 3.** Distribution of recognizable Nasonia orthologs and Nasonia-specific genes among gene models with expression sequencing support (6).

**Fig. 4.** PRANC domain proteins in Nasonia, Pox viruses, and Wolbachia. (A) Maximum-likelihood tree of PRANC-domain sequences found in Pox viruses, rickettsia (Wolbachia and Orientia), and parasitoids (N. vitripennis and Cotesia congregata). The tree was estimated using RaxML with 1000 bootstrap replicates and model settings estimated by ProTest (see (6)); alignment deposited in Treebase with ID 5N4709). Bootstrap values above 50% are shown by the corresponding nodes. The phylogenetic relationships suggest lateral transfer from Wolbachia to the Nasonia lineage. (B) Representative domain arrangements for ANK-PRANC proteins.
genes with venom features and proteolytic enzymes of venom reservoir tissues have uncovered a rich assemblage of 79 candidate venom proteins (table S16) (47). Some Nasonia venom reservoir proteins belong to previously known insect venom families such as serine proteases; however, nearly half were not related to any known insect venom proteins. As expected, many of these venom candidates show highly elevated expression in the female reproductive tract, which includes the venom glands and reservoirs. Venom genes also showed significantly higher dN/dS ratios between N. vitripennis and N. giraulti than venom genes did (Mann-Whitney U test, P < 2 × 10⁻⁶), suggesting that changes in host use between the species may be accompanied by rapid evolution of venom proteins. The large venom gene set found in Nasonia with diverse physiological effects (40) and abundance of parasitoid species (1, 2) suggests that parasitoids may contain a rich venom pharmacopeia of potential new drugs. N. vitripennis is a generalist parasitoid with a wide host utilization of many fly species, whereas the other Nasonia species are specialists (4, 10). Using genomic tools, a major host preference locus has been mapped to a region of ~2 cM (10). Other genes in the Nasonia genome that are potentially involved in host finding include odorant binding proteins (table S17) and chemoreceptors (42), which show expansions, contractions, and pseudogenization, indicative of rapid turnover.

A suite of genetic tools and resources is available or under development for the Nasonia system (4, 6, 11, 28), and the genome resources presented here can be used for fine-scale mapping (6, 9-11) and positional cloning (6) of QTLs. By combining haploid genetics, ease of rearing, short generation time, systemic RNAi, interfertile species, and new genome resources for three species, Nasonia shows promise as a genetic model system for evolutionary and developmental genetics. Genome resources described here and our resulting enhanced understanding of parasitoid biology will also open avenues for improving parasitoid utility in biological control of pests of agricultural and medical importance.

References and Notes

6. Materials and methods and supplementary text are available as supporting material on Science Online.

Author List: The Nasonia Genome Working Group


*Department of Biology, University of Rochester, Rochester, NY 14627, USA.†Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.‡School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.§The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.©Evolutionary Genetics Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 AA Haren, Netherlands.¶Department of Biology, New York University, New York, NY 10003, USA.||Department of Biology, Georgetown University, Washington, DC 20057, USA.|©Center for Comparative and Functional Genomics, University of Geneva, Geneva, Switzerland.‡‡‡Department of Biological Sciences, University of California, Los Angeles, CA 90095, USA.‡‡‡‡Department of Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.¶¶National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.|©Institut für Entwicklungsbiologie, Universität zu Köln, 50923 Köln, Germany.††Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.‡‡‡‡Drosophila Het- erotochromatin Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.|©Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland.|©Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland.|©Imperial College London, London, SW7 2AZ, UK.|©Laboratory of Protein Biochemistry and Biomedical Engineering, Ghent University, B-9000 Ghent, Belgium.|©EBI Group and Institute of Pharmaceutical Biology, University of Würzburg, 97082 Würzburg, Germany.|©Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany.|©Animal Science and Biology, Texas A&M University College Station, TX 77843, USA.|©Departamento de Ciencias Biomédicas, Universidad Federal de Alfenas, Alfenas, Minas Gerais, 37130-000, Brazil.|©Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.|©Medical Research Council, London, SW7 2AZ, UK.|©Department of Pharmaceutical Biotechnology, University of Oxford, Oxford OX1 3QX, UK.|©Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.|©Chromobiology—Centre for Behavior and Neurosciences, University of Groningen, 9700 AA Haren, Netherlands.|©Facultad de Filosofia,
Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation

Jason Rihel,1,4† David A. Prober,2,‡ Anthony Arvanites,2 Kelvin Lam,1 Steven Zimmerman,1 Sumin Jang,1 Stephen J. Haggarty,3,4,5 David Kokel,6 Lee L. Rubin,2 Randall T. Peterson,3,6,7 Alexander F. Schier1,2,3,8,9

A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multidimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as eph-a-go-go–related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors.

Most current drug discovery efforts focus on simple in vitro screening assays. Although such screens can be successful, they cannot recreate the complex network interactions of whole organisms. These limitations are particularly acute for psychoactive drugs because brain activity cannot be modeled in vitro (1–3). Motivated by recent small-molecule screens that probed zebrafish developmental processes (4–7), we developed a whole organism, high-throughput screen for small molecules that alter larval zebrafish locomotor behavior. We used an automated rest/wake behavioral assay (3, 8) to monitor the activity of larvae exposed to small molecules at 10 to 30 μM for 3 days (Fig. 1A) (3). Multiple behavioral parameters were measured, including the number and duration of rest bouts, rest latency, and waking activity (i.e., activity not including time spent at rest) (Fig. 1B) (3). We screened 5648 compounds representing 3968 unique structures and 1680 duplicates and recorded more than 60,000 behavioral profiles. Of these, 547 compounds representing 463 unique structures significantly altered behavior relative to controls, according to a stringent statistical cutoff (3).

Because the alterations in behavior were multidimensional and quantitative, we assigned a behavioral fingerprint to each compound and applied clustering algorithms to organize molecules according to their fingerprints (Figs. 2A and figs. S1 to S3). This analysis organized the data set broadly into arousing and sedating compounds and identified multiple clusters corresponding to specific phenotypes (Fig. 2, B to F; Fig. 3, A to C; Fig. 4, B and C; and figs. S1 to S4). Clustering allowed us to address three questions: (i) Do structural, functional, and behavioral profiles overlap? (ii) Does the data set predict links between known and unknown small molecules and their mechanisms of action? (iii) Does the data set identify unexpected

†These authors contributed equally to this work.*These authors contributed equally to this work.‡These authors contributed equally to this work.

Materials and Methods

SOM Text

Figs. S1 to S25

Tables S1 to S57

References

22 June 2009; accepted 24 November 2009

10.1126/science.1178028