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Abstract

Microsatellites are important molecular markers
used in numerous genetic contexts. Despite this wide-
spread use, the evolutionary processes governing
microsatellite distribution and diversity remain con-
troversial. Here, we present results on the distribution
of microsatellites of three species in the parasitic
wasp genus Nasonia generated by an in silico data-
mining approach. Our results show that the overall
microsatellite density in Nasonia is comparable to
that of the honey bee, but much higher than in eight
non-Hymenopteran arthropods. Across the Nasonia
vitripennis genome, microsatellite density varied
both within and amongst chromosomes. In contrast
to other taxa, dinucleotides are the most abundant
repeat type in all four species of Hymenoptera
studied. Whether the differences between the
Hymenoptera and other taxa are of functional signifi-
cance remains to be determined.
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Introduction

Short tandem repetitive elements (microsatellites) are one
of the most important sets of molecular genetic markers in
use today (Ellegren, 2004). Their practical use is common

in population genetic and molecular ecology studies, pro-
viding data on aspects of population genetic structure,
genome-wide levels of genetic diversity, and patterns of
paternity and kinship in natural populations (Goldstein &
Schlötterer, 1999; Avise, 2004; Selkoe & Toonen, 2006; for
case studies with the present species see Burton-Chellew
et al., 2008; Grillenberger et al. 2008). In addition, micro-
satellites are useful markers for linkage and association
mapping of traits of economic, medical or ecological inter-
est (eg Mackay, 2001; Erickson et al., 2004; Hirschhorn
& Daly, 2005; Knott, 2005). Moreover, microsatellite
loci have also been implicated in a number of human
diseases, including several cancers (Ashley & Warren,
1995; Oda et al., 2005; Pearson et al., 2005), with disease
associated with microsatellite expansion or instability.

The utility and medical importance of microsatellites
stem from their hypervariablity and their abundance in
some genomes (Ellegren, 2004). Despite this, the pro-
cesses underlying the evolution of microsatellites remain
controversial and the origin of this variability an ongoing
puzzle. The nature and properties of the mutational
process has long been of interest (Goldstein & Schlötterer,
1999; Ellegren, 2004), both for providing a robust basis for
population genetic inference and for understanding their
contribution to hereditary diseases and somatic mutations.
More generally, explaining different patterns of microsatel-
lite diversity across species is of interest if such patterns
provide clues about broader processes of genome evolu-
tion. Given that some of the suggested uses of microsatel-
lites (for instance as proxies of genome-wide levels of
diversity) make certain assumptions about how microsat-
ellite diversity is generated and maintained (which might be
wrong, or violated, by the practicalities of developing and
using them as markers, e.g. Väli et al., 2008), understand-
ing these rather fundamental aspects of microsatellite
biology are clearly important. Fortunately, to some extent
the issues concerning the evolution of microsatellite loci
can be resolved empirically. The appearance of whole-
genome sequences across a diversity of taxa now presents
us with the opportunity both to describe basic patterns of
microsatellite distribution and diversity across whole
genomes and to begin to address fundamental aspects of
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their evolution in a comparative setting. Here, we consider
the distribution and evolution of microsatellites in the para-
sitic wasp genus Nasonia.

Nasonia is a genus of generalist gregarious wasps that
parasitize large dipteran pupae (Whiting, 1967). Nasonia
has been used extensively for behavioural and genetic
research for many decades (Saul & Kayhart, 1956;
Whiting, 1967; Beukeboom & Desplan, 2003; Pultz &
Leaf, 2003). In the last 10 years it has emerged as a viable
genetic model system, in particular for the genetic dissec-
tion of complex traits (e.g. Gadau et al., 2002; Velthuis
et al., 2005, Beukeboom et al., 2010) and genic incompat-
ibilities (Breeuwer & Werren, 1995; Gadau et al., 1999;
Ellison et al., 2008; Niehuis et al., 2008; Gibson et al.,
2010) and for comparative developmental genetics (e.g.
Pultz et al., 2005; Lynch et al., 2006; Brent et al., 2007;
Olesnicky & Desplan, 2007). This emergence of Nasonia
as a next-generation model organism has recently been
given further impetus by the sequencing of the genomes
of three Nasonia species: Nasonia vitripennis, Nasonia
giraulti and Nasonia longicornis (Werren et al., 2010).
Although a set of microsatellite markers exists for Nasonia
(Pietsch et al., 2004), detailed linkage mapping and popu-
lation genetic studies would greatly benefit from having
additional microsatellite markers. The current availability
of an assembled genome for the Nasonia genus allows for
an efficient and cost-effective in silico approach for the
detection of microsatellites (Sharma et al., 2007). In addi-
tion, such an approach allows for the study of microsatel-
lite evolution and distribution throughout the genome. In
this paper, we describe the number and characteristics of
the dinucelotide to hexanucleotide microsatellite loci in the
three Nasonia species, and their position within the
genome of Nasonia vitripennis. We then compare these
findings with results from nine other arthropod species
(the insects Apis melifera, Acyrthosiphon pisum, Aedes
aegypti, Anopheles gambiae, Drosophila melanogaster,

Drosphila simulans and Bombyx mori, the arachnid Ixodes
scapularis and the crustacean Daphnia pulex).

Results

Amongst the 12 arthropod genomes surveyed, the N.
vitripennis genome has the highest microsatellite abun-
dance (approximately 1% of the genome). The genomes
of N. giraulti and N. longicornis show similarly high micro-
satellite abundance (Table 1, Fig. 1). There are thus
between 90 000 and 120 000 microsatellite loci in the
Nasonia parasitoid wasp genomes. The genome of the
honey bee, Apis mellifera, also shows a high microsatellite
abundance, which suggests this might be a Hymenoptera-
specific pattern. Our results for A. mellifera confirm earlier
reports (Meglécz et al., 2007) of high microsatellite abun-
dance in this species compared to other insects. The
estimates for local microsatellite abundance in N. vitripen-
nis show that microsatellite densities vary by more than an
order of magnitude, both within and amongst the five
chromosomes (Fig. 2). For example, on chromosome 2
the density of repeats goes from fewer than 10 kb per Mb
to more than 30 kb per Mb in fewer than 5 cM. In terms
of comparisons amongst chromosomes, chromosome 5
is less densely populated with microsatellites than the
others, whereas chromosome 2 has the most loci (Fig. 2).

Based on similarities in their flanking sequence regions,
the three Nasonia species share approximately 17–23%
orthologous microsatellite loci (Fig. 3). Taken at face value,
N. vitripennis shows the highest percentage of loci ortholo-
gous to those found in the congeners (around 60%). In N.
giraulti and N. longicornis the number of orthologous mic-
rosatellite loci with other species is lower, at 42 and 48%,
respectively. These latter two species share the most
recent common ancestor and are derived from N. vitripen-
nis (Campbell et al., 1993). The number of loci shared
amongst the species, however, is a function of the

Table 1. Microsatellite content of arthropod genomes for each of the 12 studied arthropod species

Species
Physical genome
size (Mb)

Number of
repeats

Microsatellite content
(% genome)

Microsatelllites
per Mb genome

Average distance
microsatellites (bp)

Nasonia vitripennis 332.5 92 203 0.96 277 3 606
Nasonia giraulti 332.5 119 975 1.27 361 2 771
Nasonia longicornis 332.5 93 233 0.91 280 3 566
Apis mellifera 264.1 81 277 0.77 308 3 249
Acyrthosiphon pisum 303.2 72 575 0.53 239 4 178
Anopheles gambiae 264.1 69 181 0.71 262 3 818
Aedes aegypti 804.4 51 664 0.18 64 15 570
Drosophila melanogaster 176 21 446 0.5 122 8 207
Drosophila simulans 146.7 12 363 0.17 84 11 866
Bombyx mori 508.6 29 617 0.13 58 17 173
Ixodes scapularis 2484.1 100 169 0.11 40 24 799
Daphnia pulex 332.5 31 008 0.18 93 10 723

Physical genome sizes were obtained from Gregory (2006), in which N. longicornis and N. giraulti are assumed to have similar genome sizes to N.
vitripennis.
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sequence coverage of the genomes analysed, which for
these species is a single-fold coverage in N. giraulti and N.
longicornis, and a sixfold coverage in N. vitripennis.

In terms of microsatellite composition, dinucleotide
motifs are the most abundant microsatellites in the three
Nasonia genomes, making up 89% of all microsatellites.
In the genome of A. mellifera, dinucleotides are also the
most abundant motif, although here they make up only
61% of all microsatellites. Most non-Hymenopteran arthro-
pod species also show an over-representation of a single
motif: dinucleotides in Anopheles gambiae and Ixodes
scapularis, trinucleotides in Aedes aegypti, Acyrthosiphon
pisum, Bombyx mori and Daphnia pulex, and pentanucle-
otides in Drosophila melanogaster. In Drosophila simu-
lans, both dinucleotides and trinucleotides are the most
abundant motif. Even though dinucleotides are over-
represented in the examined Hymenoptera, the abun-
dances of the motif types are different. In Nasonia, the
most abundant motif type is AG repeats (5.35 Kb
repeats/Mb analysed DNA), whereas in A. mellifera AT is
the most abundant motif type (2.60 kb repeats/Mb analy-
sed DNA) (Fig. 4). Two other species show a high abun-
dance of a single motif type type, in Anopheles gambiae
AC repeats (2.02 kb repeats/Mb analysed DNA) and in
Acyrthosiphon pisum AAT repeats are the most abundant

motif types (1.53 kb repeats/Mb analysed DNA). In the
other species, the different motif types are more evenly
represented in the genome (Fig. 4).

Discussion

A comparative genomics approach provides important
information to help us better envisage the evolutionary
forces shaping microsatellite distribution and diversity.
Here, we have shown a great variability in microsatellite
abundance in the genomes of the 12 arthropod species
examined. Our analysis shows that the three Nasonia
species and Apis, i.e. the Hymenoptera tested, have a
higher microsatellite abundance than the other arthro-
pods. In Hymenoptera, the microsatellite distribution is
skewed towards dinucleotide repeats, whereas the other
arthropod species show a more even distribution across
repeat types. To what extent might these features be
Hymenoptera-specific, and if so, why?

An important feature of hymenopteran biology is their
haplodiploid mode of reproduction: males are haploid
and usually develop parthenogenetically from unfertilized
eggs, whereas females are diploid, developing from fertil-
ized eggs (Cook, 1993). Haplodiploid reproduction has
implications for the genetics of Hymenoptera at many

Figure 1. Microsatellite abundance (kb repeat sequence per Mb of analysed DNA) generated by MSATFINDER for the 10 arthropod genomes studied (see
Experimental procedures for further details). Data are shown for di- (open area), tri- (grey), tetra- (vertical lines), penta- (diagonal lines) and
hexanucleotide repeats (black).
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levels (Crozier, 1977), and could play a role in explaining
the observed pattern of microsatellite diversity and abun-
dance. For example, theory suggests that because lethal
and deleterious mutations are directly exposed to selec-
tion in haploid males, haplodiploid organisms should have

a lower genetic load, i.e. less reduction in fitness as a
result of deleterious alleles maintained at mutation-
selection balance (Crozier, 1985; Werren, 1993). Empiri-
cal evidence following meta-analysis supports this
prediction (Henter, 2003). A lower genetic load can in turn
result in less stringent selection for the maintenance of
DNA (mismatch) repair mechanisms, which may play
an important role in microsatellite accumulation and evo-
lution (Strand et al., 1993; Ellegren, 2004; Schlötterer,
2004; Buschiazzo & Gemmell, 2006). A recent study by
C. Smith (Werren et al. 2010), in which the Nasonia
genome was screened for a wide array of additional
types of repetitive DNA, including interspersed repeats
and low complexity DNA sequences, confirmed that
Nasonia has one of the most repeat-rich insect genomes
studied so far.

The alternative, a higher mutation rate for Nasonia,
seems to be less likely. In a recent study of mutation
accumulation in offspring sex ratios in N. vitripennis,
Pannebakker et al. (2008) found no obvious difference in
mutation rate for this trait compared to similar life-history
traits in other taxa. Whether DNA repair mechanisms actu-
ally show a reduced efficiency in Hymenoptera and other

Figure 2. Heat map showing the local microsatellite abundance (Kb repeats per Mb analysed DNA) in regions of the Nasonia vitripennis genome,
projected on the high-density linkage map of the Nasonia genome published by Niehuis et al. (2010). Horizontal bars (1.01–5.51) represent clusters of
markers with no recombination amongst them (for details see Niehuis et al., 2010). The local microsatellite abundance was calculated for 264 marker
clusters with an average size of 1.69 cM (see Supporting Information Table S2). Mean microsatellite abundance is given below each chromosome. The
heat map represents 93% of the microsatellites found in the N. vitripennis genome.

Figure 3. Venn diagram showing the overlap in microsatellites of three
Nasonia species. The figures indicate the number of shared and unique
microsatellites amongst species. The Nasonia vitripennis genome had a
sixfold coverage, whereas the Nasonia giraulti and Nasonia longicornis
genomes had a single-fold coverage.
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haplodiploids, thereby explaining the observed high abun-
dance of repetitive DNA, remains a hypothesis to be
tested.

The overall picture emerging from our data is one of
heterogeneity in microsatellite abundance and composi-

tion across arthropod taxa. This pattern is corroborated
by other studies into genomic microsatellite patterns in
insects (Ross et al., 2003; Archak et al., 2007; Meglécz
et al., 2007) and on a wider range of eukaryotes (La Rota
et al., 2005; Sharma et al., 2007) and prokaryotes

Figure 4. Motif type abundance for dinucleotide (A) and trinucleotide (B) repeats (in kb repeat sequence per Mb of analysed DNA) for the 12 studied
arthropod genomes.

Microsatellites in Nasonia 95

© 2010 The Authors
Journal compilation © 2010 The Royal Entomological Society, Insect Molecular Biology (2010), 19 (Suppl. 1), 91–98



(Kassai-Jager et al., 2008). Even though the results of
individual in silico studies can vary as a result of different
thresholds for the inclusion of repeats, the observed
pattern of heterogeneity is robust. The challenge for
evolutionary geneticists is to explain this heterogeneity.
The general consensus has been that factors such as
differences in recombination may not explain differences
in microsatellite distribution and diversity, with microsatel-
lite loci playing a causal role in recombination hot spots
rather than being a consequence of them (Ellegren, 2004;
but see Bagshaw et al., 2008). The data presented here
show heterogeneity in microsatellite density across the
five chromosomes of N. vitripennis. In a recent study of
recombination rates across the N. vitripennis genome,
Niehuis et al., 2010 found a correlation between the pres-
ence of simple repeats (including monomers in that study)
and the recombination rate, but again the direction of
causation is far from certain. However, even though the
observed patterns of microsatellite abundance and com-
position across taxa appear complex, the possibility of
uncovering the biological basis of differences amongst
species in microsatellite evolution may not be hopeless.
For example, with more datasets becoming available, we
may be able to test the extent to which species with
different patterns or mechanisms of DNA mismatch repair
vary in microsatellites. Moreover, a recent study has
shown an association between body temperature and
maximum microsatellite length in mammals (Amos &
Clarke, 2008), suggesting that broad patterns might yet be
awaiting discovery.

Experimental procedures

We obtained genome sequences for the three Nasonia species,
N. vitripennis, N. longicornis and N. giraulti (Hymenoptera: Chal-
cidoidea: Pteromalidae), and for nine other arthropod species
with published genome sequences: the honey bee, A. mellifera
(Hymenoptera: Apoidea: Apidae), the pea aphid Acyrthosiphon
pisum (Homoptera: Aphidoidea: Aphididae), the yellow fever mos-
quito Aedes aegypti (Diptera: Culicoidea: Culicidae), the African
malaria mosquito Anopheles gambiae (Diptera: Culicoidea: Culi-
cidae), the fruit flies Drosophila melanogaster and Drosophila
simulans (Diptera: Ephydroidea: Drosophilidae), the silkworm
Bombyx mori (Lepidoptera: Bombycoidea: Bombycidae), the deer
tick Ixodes scapularis (Acari: Ixodidae), and the water flea
Daphnia pulex (Diplostraca: Daphniidae). Details of the assembly
versions and sources are given in Supporting Information
Table S1.

The genome sequences were scanned for the presence of
microsatellites using MSATFINDER 2.09 (Thurston & Field, 2005)
using the iterative search engine and allowing for interrupted
microsatellites. In MSATFINDER, microsatellites are joined together
in a single interrupted microsatellite when the distance between
one microsatellite and the preceding one is equal to or less than
the footprint of the current or preceding microsatellite and both
share the same type of motif. We searched for microsatellites with

motif length of two to six base pairs (bp) and minimum repeat
numbers of eight, five, five, five and five (di-, tri-, tetra, penta- or
hexanucleotides). For N. vitripennis, the microsatellites are avail-
able online through Genboree at Baylor College of Medicine
(http://www.genboree.org/java-bin/login.jsp; database: Nasonia
1.0; track: seq: microsat).

The genome sequences used are all assembled into scaffolds
or chromosomes, apart from the N. longicornis and N. giraulti
sequences that are available only as single pass trace
sequences. As this can result in a redundant detection of micro-
satellites, we clustered identical microsatellites of all three
Nasonia species using MEGABLAST [parameters: filtering (-F): T;
gap cost (-G): 1; gap extension (-E): -1; reward (-r): 1; wordsize
(-W): 28; mismatch penalty (-q): -3; dropoff (-y): 10; final dropoff
(-Z): 50; expect value (-e): 1e-5]. Clustered sequences were then
assembled into consensus sequences using PHRAP (-forcelevel
10; Green, 1999).

Local microsatellite abundance was determined using the
approach outlined by Niehuis et al. (submitted). Briefly, in a high-
density Nasonia linkage map (1255 single nucleotide polymor-
phisms, sequence tagged sites (STS), or length polymorphic
markers) spanning 446.9 cM, 264 marker clusters were defined
by the absence of recombination between the markers (Niehuis
et al., submitted). Average marker cluster size was 1.69 cM. For
each marker cluster, microsatellite densities were calculated
using the online version of MSATFINDER (Thurston & Field, 2005)
with search parameters as indicated above.

Orthologous microsatellites within the Nasonia genus were
identified using reciprocal BLASTN searches amongst the three
species [parameters: filtering (-F): T; gap cost (-G): 2; gap exten-
sion (-E): 1; reward (-r): 1; wordsize (-W): 11; mismatch penalty
(-q): -1; dropoff (-y): 100; final dropoff (-Z): 100; expect value (-e):
1e-5]. Redundant BLAST hits were filtered out using an in-house
developed PERL script, and the intersects between the resulting
datasets (Nv/Ng, Nv/Nl and Nl/Ng) were determined using the
merge command in the R 2.8.0 software package (Ihaka &
Gentleman, 1996; R Development Core Team, 2008).
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